

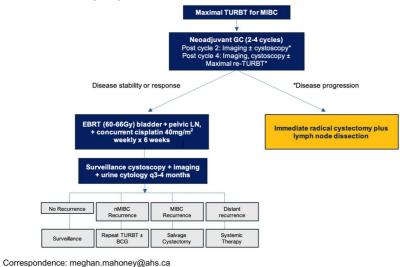
Dr Amol Kakade

Consultant,

Radiation Oncologist,

Sir H N Reliance foundation hospital, Mumbai

Long-term Outcomes of Neoadjuvant Chemotherapy (NAC) before Bladder-Sparing Chemoradiotherapy (CRT) for Patients with Nonmetastatic, Muscle-invasive Bladder Cancer (MIBC)


Meghan E. Mahoney¹, Nely Díaz-Mejía¹, Eshetu Atenafu², Peter Chung³, Alexandre Zlotta⁴, Nimira Alimohamed⁵, Neil Fleshner⁴, Gregory Lo⁶, Pawel Zalewski⁶, Girish Kulkarni⁴, Alejandro Berlin³, Robert Bristow³, Di Maria Jiang¹, Srikala S. Sridhar¹ Division of Medical Oncology¹, Department of Biostatistics², Division of Radiation Oncology³, Division of Urology⁴, Princess Margaret Cancer Center, Toronto, ON; Arthur Child Cancer Centre, Calgary, AB⁵, Durham Regional Cancer Centre, Oshawa, ON⁶

Background

- ➤ Neoadjuvant, cisplatin-based combination chemotherapy followed by concurrent chemoradiation is an emerging approach in carefully selected MIBC patients who opt for bladder-sparing.
- Long-term data on its efficacy & tolerability is lacking.
- ➤ We evaluated long-term outcomes in patients with MIBC treated with this approach.

Methods

- ➤ A retrospective chart review was performed on 56 patients treated with NAC+CRT, 2008-2017 at the Princess Margaret and Durham Regional Cancer Centers.
- ➤ Primary outcomes: 5-year disease free survival (DFS), bladder intact disease-free survival (BI-DFS) & overall survival (OS).

Patient & Treatment Characteristics

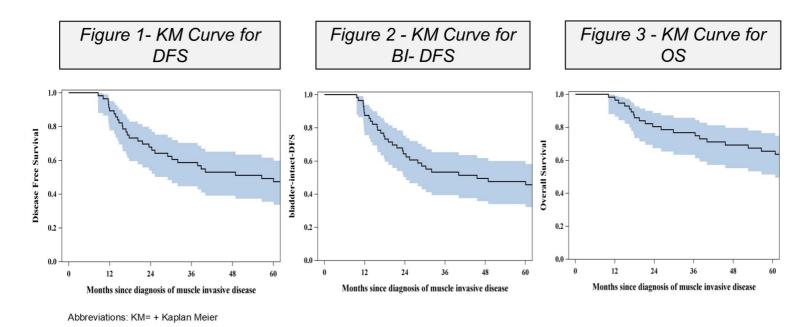

Table 1 - Demographics			
Age (years)	72 [45-87]		
Male	44 (79)		
Smoking			
Never smoker	14 (25)		
Current smoker	11 (20)		
Ex smoker	31 (55)		
ECOG PS			
0	35 (66)		
1	17 (32)		
2	1 (2)		
CrCl (mL/min)	59 [18-137]		
Hydronephrosis	14 (25)		
Tumor size (cm)	4.1 [1.2-12]		
Clinical Stage			
II	33 (59)		
III	19 (34)		
IV	4 (7)		
Histology			
Pure Urothelial Carcinoma (UC)	35 (63)		
UC with squamous	13 (23)		
UC with plasmacytoid variant	7 (13)		
UC with micropapillary variant	1 (2)		
Carcinoma-in-Situ	17 (30)		
LVI	10 (18)		

Table 3: Recurrences			
Total Recurrences	23 (41		
Local recurrence	11 (20		
Required Cystectomy	8 (14		
Distant recurrence	12 (21		

Table 2 - Tr	reatment		
TURBT			
Initial Max TURBT	38 (68)		
NAC			
NAC Regimen			
GC q 21 days	19 (34)		
GC split q 21 days	32 (57)		
Other	5 (9)		
No. of NAC cycles			
2	3 (5)		
3	18 (32)		
4	35 (63)		
Completed planned NAC	53 (95)		
NAC Grade 3/4 Toxicity	12 (21)		
Neutropenia	6 (11)		
Thrombocytopenia	2 (4)		
Infection	2 (4)		
Anemia	1 (2)		
Other	1 (2)		
NAC Dose Reduction	31 (55)		
Median dose ↓ (%)	25 [15- 50]		
NAC Dose Delay	22 (39)		
Concurrent Chemoradiati	ion		
Reason for TMT			
Patient preference	33 (59)		
Comorbidities RC	20 (36)		
Both	2 (4)		
Planned RT Dose			
< 60 Gy	5 (9)		
>= 60 Gy	51 (91)		
Completed Planned RT	56 (100)		
Completed ≥ 60%			
planned concurrent chemotherapy	49 (86)		

Table 2 - Treatment

- ➤ Median follow up was 96 months (10-149).
- ➤ Median DFS was 56.6 months & 5-year DFS was 49.2%.
- ➤ Median BI-DFS was 45.6 months & 5-year BI-DFS was 47.6%.
- ➤ Median OS was 105.0 months with a 5-year OS rate of 62.2%.

Acknowledgements

Preliminary Publication: Jiang, D.M, Clinical Genitourinary Cancer 2019

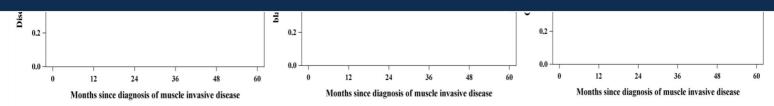

- ➤ Median follow up was 96 months (10-149).
- ➤ Median DFS was 56.6 months & 5-year DFS was 49.2%.
- ➤ Median BI-DFS was 45.6 months & 5-year BI-DFS was 47.6%.
- ➤ Median OS was 105.0 months with a 5-year OS rate of 62.2%.

Figure 1- KM Curve for

Figure 2 - KM Curve for

Figure 3 - KM Curve for

NAC + Concurrent Chemoradiotherapy is a safe & effective bladdersparing approach with encouraging long-term outcomes in carefully selected patients with MIBC

Abbreviations: KM= + Kaplan Meier

Acknowledgements

Preliminary Publication: Jiang, D.M, Clinical Genitourinary Cancer 2019

Efficacy of Neoadjuvant/Induction (NAC) Chemotherapy in Nonmetastatic Muscle-Invasive Bladder Cancer Treated with Chemoradiotherapy (CRT): A Systematic Review and Meta-Analysis

Mariana Fauth Seibel¹ (marifseibel@gmail.com), Letícia Dal Ri¹, Bruno Lins de Souza², Julia Belone Lopes³ Vitor Teixeira Liutti⁴, Daniel V. Araujo⁵.

Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil. 2. Federal University of Ceará, Ceará, Brazil. 3. School of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil. 4.

Cancer Hospital of Londrina, Londrina, Brazil. 5. Division of Medical Oncology and Hematology, Department of Medicine, University of Florida, Gainesville, FL, USA

Background

- Neoadjuvant chemotherapy (NAC) followed by radical cystectomy (RC) is the established standard of care for nonmetastatic muscleinvasive bladder cancer (MIBC).
- Chemoradiotherapy (CRT) is an acceptable treatment alternative for MIBC.
- While NAC has proven beneficial before RC, its value prior to CRT remains uncertain.
- This systematic review and meta-analysis aimed to evaluate the impact of NAC on outcomes of patients undergoing CRT for bladder preservation.

Methods

- PROSPERO registration (CRD42024590258).
- Systematic search of PubMed, Embase and Cochrane databases.
- Inclusion criteria: (i) studies comparing NAC plus CRT versus CRT alone in MIBC; (ii) both randomized controlled trials (RCTs) and observational studies.
- Exclusion criteria: Studies with overlapping populations or non-English publications.
- Statistical analyses were performed using random-effects models in Review Manager 5.4.1.
- Heterogeneity was assessed with I² statistics.

- 3.354 patients from 4 observational studies.
- 656 (19.5%) patients received NAC with platinum-based chemotherapy.
- Follow-up time ranged from 15.9 to 74.4 months.
- No significant difference in overall survival (OS) (HR = 0.99, 95% CI 0.87–1.12, p = 0.87, I^2 = 0%). Figure 1.
- No difference for disease-free survival (DFS) (HR = 1.10, 95% CI 0.76–1.60, p = 0.61, I² = 0%). Figure 2.
- High risk of bias by ROBINS-I tool.
- Very low certainty of the evidence by GRADE.

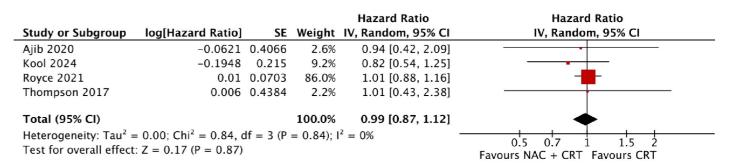


Figure 1: Forest plot for OS

				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Ajib 2020	0.0356	0.2184	75.9%	1.04 [0.68, 1.59]	-
Thompson 2017	0.2853	0.3874	24.1%	1.33 [0.62, 2.84]	
Total (95% CI)			100.0%	1.10 [0.76, 1.60]	•
Heterogeneity: Tau ² = Test for overall effect	= 0.00; $Chi^2 = 0.32$, d :: $Z = 0.50$ (P = 0.61)	f = 1 (P	= 0.57); I	$r^2 = 0\%$	0.2 0.5 1 2 5 Favours NAC + CRT Favours CRT

Figure 2: Forest plot for DFS

 3.354 patients from 4 observational studies.

Study or Subgroup log[Hazard Ratio] SE Weight IV, Random, 95% CI IV, Random, 95% CI

Conclusion

Our analysis found no survival benefit from adding NAC to CRT in patients with MIBC. However, the quality of the evidence is very low, largely due to the retrospective nature of the data. Further randomized clinical trials are needed to clarify the role of NAC in bladder preservation strategies.

0.61, $I^2 = 0\%$). Figure 2.

- High risk of bias by ROBINS-I tool.
- Very low certainty of the evidence by GRADE.

Total (95% CI)

Heterogeneity: Tau² = 0.00; Chi² = 0.32, df = 1 (P = 0.57); I² = 0%

Test for overall effect: Z = 0.50 (P = 0.61)

100.0%

1.10 [0.76, 1.60]

0.2

0.5

Favours NAC + CRT Favours CRT

Figure 2: Forest plot for DFS

Thank you