



Comparative Efficacy of Cryoablation versus Robot-assisted Partial Nephrectomy in the Treatment of cT1 Renal tumours: A Systematic Review and Meta-Analysis

Dr Ravi Taori
Consultant Urologic Oncologist and Robotic Surgeon
HCG Cancer Care Hospital, Bengaluru

#### SYSTEMATIC REVIEW

#### **Open Access**





HuiYu Gao<sup>1†</sup>, Lin Zhou<sup>1†</sup>, JiaBin Zhang<sup>1†</sup>, Qiang Wang<sup>1†</sup>, ZiYuan Luo<sup>3</sup>, Qian Xu<sup>1</sup>, Ying Tan<sup>1</sup>, Hui Shuai<sup>1</sup>, JunJie Zhou<sup>1</sup>, Xiang Cai<sup>1</sup>, YongBo Zheng<sup>1</sup>, Wang Shan<sup>4</sup>, Xi Duan<sup>2\*</sup> and Tao Wu<sup>1\*</sup>

# Background and Aim

### **Background:**

- Kidney cancer incidence is rising globally.
- Early diagnosis of small renal masses (<7 cm) is common.</li>
- RAPN is the gold standard, but CA is emerging for high-risk patients.

### **Aims**

- Compare perioperative outcomes (hospital stay, blood loss, complications).
- Evaluate renal function preservation.
- Assess oncologic outcomes (recurrence, survival).

## Methods

### Study Design:

- Systematic review & Metaanalysis.
- 10 studies (2,011 patients: 1,029 CA, 982 RAPN).
- **Data Sources:** PubMed, Embase, Web of Science, Cochrane Library.

#### Outcomes:

- Primary: Perioperative results, complications, renal function, recurrence/survival.
- Secondary: Operative time, Clavien-Dindo complications.
- **Analysis:** Review Manager 5.4; random/fixed-effect models.

#### Identification of studies via databases and registers



Table 1 Baseline characteristics

|                        |         | Patients(n) |      | Age(year)    |              | BMI(kg/m²)  |             | Tumor size(cm) |            | RENAL≥ 10( <i>n</i> ) |      | CCI(n)     |            | Surgical<br>approach | Follow-up<br>duration(month) |              |
|------------------------|---------|-------------|------|--------------|--------------|-------------|-------------|----------------|------------|-----------------------|------|------------|------------|----------------------|------------------------------|--------------|
| Reference              | Country | CA          | RAPN | CA           | RAPN         | CA          | RAPN        | CA             | RAPN       | CA                    | RAPN | CA         | RAPN       |                      | CA                           | RAPN         |
| Kawaguchi,<br>S [21]   | Japan   | 49          | 50   | 78.44(4.7)   | 75.35(3.12)  | 23.7(3.8)   | 23.1(2.4)   | 2.4(0.8)       | 2.7(1.2)   | 0                     | 1    | NA.        | NA.        | PCA/RAPN             | 20.1(14.5)                   | 24.3(14.5)   |
| Uemura, T<br>[25]      | Japan   | 48          | 78   | 76.58(9.17)  | 60.65(12.84) | 23.35(3.82) | 23(3.02)    | 2.67(1.07)     | 1.9(0.6)   | 5                     | 3    | NA.        | NA.        | PCA/RAPN             | 16.96(19.87)                 | 20.26(13.6)  |
| Liu, HY [22]           | Taiwan  | 55          | 55   | 59.44(14.77) | 57.27(13.28) | 25.04(4.23) | 25.29(4.58) | 3.86(2.13)     | 4.06(2.01) | 14                    | 11   | NA.        | NA.        | LCA/RAPN             | 54.96(34.59)                 | 33.2(19.55)  |
| Rembeyo,<br>G [23]     | France  | 55          | 36   | 71.67(4.39)  | 60.09(2.65)  | 26.92(1.10) | 29(1.51)    | 4.62(0.29)     | 4.55(0.34) | 19                    | 4    | NA.        | NA.        | CA/RAPN              | 20.14(2.57)                  | 23.73(3.95)  |
| Fraisse, G<br>[19]     | France  | 177         | 177  | 69.94(9.38)  | 59.89(10.75) | NA.         | NA.         | 2.59(0.86)     | 2.77(0.92) | 10                    | 10   | 3.21(1.72) | 2.87(2.06) | PCA/RAPN             | NA.                          | NA.          |
| Bertolo, R<br>[16]     | America | 65          | 65   | 79.3(4.1)    | 79.3(3.3)    | 27.9(5.9)   | 27.4(4.9)   | 3(1)           | 2.9(1)     | NA.                   | NA.  | 2.3(1.6)   | 2(1.5)     | PCA/RAPN             | 45.65(11.37)                 | 36.65(11.37) |
| Caputo, P. A<br>[17]   | America | 31          | 31   | 68.47(2.92)  | 68.47(2.92)  | 29.77(7.46) | 31.49(8.63) | NA.            | NA.        | NA.                   | NA.  | 6(1.48)    | 4(1.48)    | PCA/RAPN             | 11.71(12.44)                 | 36.16(39.48) |
| Emara, A. M<br>[18]    | Britain | 56          | 47   | 69.75(12)    | 60.5(10.5)   | NA.(NA.)    | NA.(NA.)    | 2.56(0.72)     | 3.28(1.22) | NA.                   | NA.  | NA.        | NA.        | LCA/RAPN             | 31.3(13.48)                  | 16.5(6.49)   |
| Tanagho, Y<br>[24]     | America | 267         | 233  | 69.3(11)     | 57.4(11.9)   | 30.4(7.8)   | 30.1(6)     | 2.5(1)         | 2.9(1.5)   | NA.                   | NA.  | 6.5(2.2)   | 2.1(1.8)   | LCA&PCA/RAPN         | 39.8(34.3)                   | 21.9(18.8)   |
| Guillotreau,<br>J [20] | America | 226         | 210  | 67.4(11.3)   | 57.8(11.8)   | 30.1(6.4)   | 29.3(6.2)   | 2.2(0.9)       | 2.4(0.8)   | NA.                   | NA.  | NA.        | NA.        | LCA/RAPN             | 39.76(43.35)                 | 4.55(5.15)   |

CA, Cryoablation

PCA, Percutaneous Cryoablation

LCA, Laparoscopic Cryoablation

RAPN, Robot-Assisted Partial Nephrectomy

BMI, Body Mass Index

R.E.N.A.L. score, Renal Nephrometry Score

CCI, Charlson comorbidity index



OR Time - No Difference

#### **LOS – Favors CA**

[MD -1.76 days; 95% CI -3.12 to -0.41;p=0.01]

#### **Blood Loss - Favors CA**

[MD -104.60 ml; 95% CI -152.58 to -56.62; p < 0.0001],

#### **Overall Complications – Favors CA**

[OR 0.62; 95% CI 0.45 to 0.86; p=0.004],

Minor, Clavien 1-2 - No Difference

Major, Clavien 3-5 - NO Difference

Fig. 2 A-Operative Time, B-Length of Hospital Stay, C-Blood Loss, D-Overall Complications, E-Minor, Clavien 1–2, F-Major, Clavien 3–5



Fig. 3 Renal function 12 months post-surgery

|                            | CA          |         | RAP                            | N     |        | Odds Ratio           | Odds Ratio         |
|----------------------------|-------------|---------|--------------------------------|-------|--------|----------------------|--------------------|
| Study or Subgroup          | Events      | Total   | Events                         | Total | Weight | M-H, Fixed, 95% C    | M-H, Fixed, 95% CI |
| Bertolo, R 2019            | 8           | 48      | 0                              | 54    | 3.6%   | 22.88 [1.28, 407.94] |                    |
| Caputo, P. A 2017          | 5           | 22      | 0                              | 28    | 3.1%   | 17.91 [0.93, 344.20] | •                  |
| Emara, A. M 2014           | 2           | 39      | 0                              | 33    | 4.6%   | 4.47 [0.21, 96.40]   |                    |
| Fraisse, G 2019            | 15          | 177     | 5                              | 177   | 42.0%  | 3.19 [1.13, 8.96]    |                    |
| Guillotreau, J2012         | 25          | 181     | 0                              | 156   | 4.2%   | 51.00 [3.08, 845.08] |                    |
| Liu, HY 2021               | 2           | 27      | 0                              | 32    | 3.8%   | 6.37 [0.29, 138.70]  |                    |
| Rembeyo, G 2020            | 12          | 44      | 3                              | 32    | 23.2%  | 3.63 [0.93, 14.14]   | _                  |
| Tanagho, Y 2013            | 10          | 79      | 0                              | 185   | 2.4%   | 56.05 [3.24, 969.37] |                    |
| Uemura, T 2021             | 3           | 48      | 2                              | 78    | 13.1%  | 2.53 [0.41, 15.74]   | <del></del>        |
| Total (95% CI)             |             | 665     |                                | 775   | 100.0% | 7.83 [4.32, 14.19]   | •                  |
| Total events               | 82          |         | 10                             |       |        |                      | 100                |
| Heterogeneity: Chi2 = 1    | 0.12, df =  | 8 (P =  | 0.26); I2                      | = 21% |        |                      |                    |
| Test for overall effect: 2 | Z = 6.79 (I | P < 0.0 | 0.001 0.1 1 10 1000<br>CA RAPN |       |        |                      |                    |

a

|                                                            |                   |          |                | Hazard Ratio       |   | atio        |        |   |
|------------------------------------------------------------|-------------------|----------|----------------|--------------------|---|-------------|--------|---|
| Study or Subgroup                                          | log[Hazard Ratio] | SE       | Weight         | IV, Random, 95% CI |   | IV, Random, | 95% CI |   |
| Bertolo, R 2019                                            | -0.1392621        | 0.772799 | 28.6%          | 0.87 [0.19, 3.96]  |   | -           |        | _ |
| Tanagho, Y 2013                                            | 0.13976194        | 0.48884  | 71.4%          | 1.15 [0.44, 3.00]  |   |             |        |   |
| Total (95% CI)                                             |                   |          | 100.0%         | 1.06 [0.47, 2.39]  |   |             |        |   |
| Heterogeneity: Tau <sup>2</sup> = Test for overall effect: |                   | 0.2      | 0.5 1<br>CA R/ | 2<br>APN           | 5 |             |        |   |

b



Renal Function at 12 Months - No Difference

#### **Recurrence Rate – Favors RAPN**

[OR 7.83; 95% CI 4.32 to 14.19; p < 0.00001]

RFS - No Difference

OS - No Difference

C

# Limitations

- No High Quality RCTs (Only retrospective and prospective cohort studies)
- **Different CA techniques** (PCA, LCA) were included in the review without sufficient literature to conduct a subgroup analysis on CA techniques, possibly leading to high heterogeneity.
- CA is often used in older patients with multiple comorbidities
- Data does not yet support subgroup analysis of patients with cT1a and cT1b tumors together, and further research is needed in the future.
- Variations in surgical experience and equipment may lead to differences

# Conclusion

### **CA vs RAPN:**

- CA offers better short-term outcomes (hospital stay, blood loss, complications).
- Comparable renal function and survival.
- Major drawback: Significantly higher recurrence with CA.

### **Clinical Implication:**

CA viable for non-surgical candidates; RAPN remains gold standard for curative intent.

### **Future Needs:**

RCTs to validate long-term outcomes and subgroup analyses (e.g., cT1a vs. cT1b).

# Thank you!